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1.0 INTRODUCTION

Coupling between velocity oscillations and the combustion zone can be

-

o
3
L]

significant 1in determining the acoustic stability of solid propellant rocket

motors (1-4). Observations of nonlinear wave behavior, pulsed instabilities

in motors and laboratory burners, and shifts in mean pressures have been used

to formulate qualitative heuristic models for this coupling (5-7). Attempts

to quantify these models have been unsuccessful in the sense that scaling

laboratory results to motor environments has produced conflicting results (8-

10). Hence, the basic mechanisms have not been properly characterized by

these models.

A review of studies on flow fields in chambers and acoustics in ducts

suggests that these coupling phenomena include the effects of acoustic distur-

bances on turbulence in flows with high surface transpiration rates, acoustic

streaming in the presence of combustion, and unsteady heterogeneous combustion

- processes. These processes involve fluid-dynamic and combustion-related phe-

nomena which in themselves have not been studied qualitatively. In particular,

the effect of substantial gas injection at lateral walls on acoustic

streaming, on the acoustic boundary layer, on turbulence, on wall heat

transfer, on heterogeneous combustion processes, and on their interactions

have never been thoroughly examined. These processes, however, determine how

acoustic waves interact with the propellant combustion processes and thereby

influence the generation or absorption of acoustic energy in a solid propel-

lant rocket motor. Studies of steady-state flows (11-13) have determined that

X wall blowing has a significant influence on the character of the flow-

field. It is therefore reasonable to expect a similar influence under oscil-

latory conditions as well.
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The objective of the experimental aspects of this program is to investigate
oscillatory flow phenomena in a simulated rocket motor flowfield. Thus,
meeting the technical objectives of this program provides basic knowledge and
understanding of fundamental physical phenomena involved in the coupling

between acoustic waves and combustion phenomena.

To investigate these phenomena, a cold flow apparatus was constructed to
simulate the internal flow field in the combustor. Nitrogen flowing through
large porous bronze tubes simulates the flow of gas from the propellant sur-
face. The overall length and nozzle throat diameter can be adjusted to be
investigated. A rotating valve at the nozzle exhaust plane provides a means
of generating acoustic oscillations at a controlled frequency. Specific
experimental studies described herein address the effect of acoustic distur-
bances on velocity profiles, turbulence, and surface heat flux. The motor
length, surface Mach number, and amplitude and frequency of the acoustic
oscillations are the primary variables. This report describes the technical

progress made during the third year of technical effort.
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2.0 EXPERIMENTAL STUDIES

The primary objective of the cold flow studies is to determine the effect

- BB,
a

’

of velocity oscillations on the oscillatory wall heat transfer and the acous-
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tic wave behavior in a simulated rocket motor geometry. The results will

provide direct experimental evidence for comparison with the velocity coupling

.

models and a basis for the development of improved models.

2.1 APPARATUS DESCRIPTION
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To conduct these experiments, the apparatus shown schematically in figure

]
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;g 1 has been fabricated. Nitrogen flowing through porous cylindrical bronze
~
.aa tubes simulates the combustion process at the propellant surface (this techni-
L.ﬂ

que has been used successfully in previous studies at CSD on the effects of

both steady-state (10,14) and oscillatory characteristics (15) on the internal

ballistics). A flow distribution tube is used to equalize the flow to the 4-
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in. internal diameter porous tubing from the nitrogen supply system. Sonic

flow is achieved either through this distribution tube or by orifices in the
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manifold to each section. Figures 2 and 3 show the construction of each
section.

Each section is equipped with two ports for heat flux gages (as shown in
figure 3) or for hot wire anemometers. Pressure taps are also located at
these axial stations on the "grain" surface and one tap is located between the
porous tubing and the flow distribution tubing. These taps lead to a Scani-
valve/pressure transducer multiplexing system for recording the mean pressure
distribution throughout the apparatus. The hot wire anemometers and the hot
film flux gages are connected to TSI Model 1050 constant temperature anemo-
meters. By operating them in the constant temperature mode, frequencies up to

50 kHz can be recorded faithfully.
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The simulator is equipped with a rotating valve at the aft end to gener-
ate acoustic velocity oscillations. The frequency is controlled by varying
the rotational speed of the electric motor driving the valve. To minimize the
development of planar acoustic waves at the aft-end, the rotating valve is
attached to an annular chamber which surrounds the steady-state nozzle. This
annular chamber is open at the forward face to the main motor cavity. Figure
4 shows an exploded view of the aft-end hardware. The AN fitting leads to the
rotating valve. The cavity for collecting the flow to the rotating valve is
also equipped with a Kistler pressure transducer.

Considerable attention has been given to generating a realistic flow
environment. By sectioning the apparatus, the length-to-diameter ratio can be
varied from 2 and 23; however, the primary interest is between 9.5 and 23.
o, This range encompasses the transition in velocity profile predicted by Beddini
(11).

2.2 PROGRESS SINCE SECOND ANNUAL REPORT

fﬂ The primary effort during the third year has been directed to two areas:
first, extending the oscillatory heat transfer measurements to include more
data in the flow transition region and to include the aft-end of the high L/D

- cavity; and second to measuring the oscillatory flow profiles across the port

g at several axial stations. The following sections describe the principal
results obtained in each of these areas.

2.2.1 Oscillatory Heat Transfer Measurements

An additional series of tests was conducted to measure the oscillatory
heat transfer coefficient to augment the data reported last year (16). By
switching the head-end closure and the aft-end nozzle assembly, end for end

‘o data at six additional axial locations were obtained. As in the previously

reported results (16), oscillations were driven at Irequencies of

N approximately 85 Hz and 170 Hz, corresponding closely to the first two axial
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modes predicted by classical acoustics*, Two rotating valves of different

(¥}
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sizes were used to study the effect of acoustic pressure amplitude on the
oscillatory heat flux. 1In these tests, the signals from all six heat flux
gages, as well as the signals from the head end and two aft-end Kistler
pressure transducers, were recorded on FM tape for later analysis. The signal
from an optical tachometer on the drive shaft of the rotating valve was also

~ recorded. This signal was used during playback of the data to provide a
coherent trigger signal for the spectral analyzer.

Two forms of spectral analysis of these data were conducted because the
flux oscillations include the response to the driven flow oscillations, as
well as the response to any natural turbulence in the flow. First, the rms
heat transfer coefficient was derived from the power spectra. This form
reflects the response to both the driven and natural turbulence oscillations.
Second, the rms heat transfer was derived from linear spectra by coherently
averaging 50 ensembles of data using the reflecting tachometer as a trigger
source, This "coherent" or "phase averaging" approach tends to remove the
random fluctuations and thereby provides a better estimate of the heat
transfer coefficient oscillations produced by the driven oscillations alone.

Figures 5 through 8 present the oscillatory heat transfer coefficient
versus length for two test frequencies and amplitudes of area oscillation.
The surface Mach number is approximately 0.001. Figures 9 through 12 show the

corresponding results obtained for a surface Mach number

*Frequency sweeps were made to identify the frequencies of maximum acoustic
response. No clearly defined peaks were observed which suggest high acoustic

damping.
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of 0.0018. Each figure presents two waterfalls showing the variation in
spectral content as a function of axial location. The left hand figure water-

fall shows the rms averaged spectra while the right hand figure waterfall

fﬂ shows the coherently averaged spectra.
Eé A number of important observations can be made from these data. First,
IL the rms averaged spectra all show a substantial increase in noncoherent fluc-

tuations at axial locations greater than 7 diameters. This is particularly

apparent when one examines the spectra at frequencies below 50 Hz. This

ol behavior suggests that turbulence in the gas flow has penetrated to the wall.
E~i Interestingly, the axial pressure drop and velocity profile data also show the
i“ initial departure from the rotational inviscid flow model at about this same
i:1 location (17). Thus, these data are consistent with the basic concept of the

flow transition proposed by Beddini (9).

A second observation results from examining the axial variations in the
spectra of the oscillatory heat transfer coefficients. In all cases, heat
flux oscillations at the simulated propellant surface were generated from near
the head-end of the simulated motor (i.e., Z/D = 0.6), to Z/D if approximately
6 to 8 even at acoustic pressures as low as 0.05%Z. Proceeding downstream, no
coherent heat flux oscillations which accompany the lowest acoustic pressures
were observed. This behavior is more apparent at the higher driving frequency

A,
than at the lower frequency. At the higher driver amplitudes (i.e., A/A >

3%2), the driven oscillations in the heat flux are observed at all the axial

locations.

A third observation is that significant harmonic content is generated at
z&% the higher frequencies and at the higher driving amplitudes, and consequently
'2. at the higher acoustic pressures. The harmonics first appear upstream of the
transition and are most apparent near the head end of the motor. Interest-

e ingly, these nonlinear effects are also observed in the acoustic pressures.
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}, These results are not consistent with either the linear or the nonlinear
models for velocity coupling. According to the liner model, one would expect
I' a sinusoidal variation in the amplitude of the heat transfer with axial posi-

. tion at the lower frequency (fundamental axial mode). At the higher

frequency, one would expect the oscillatory heat transfer coefficient to vary
I. as the full cycle of a rectified sine wave. Neither pattern is observed.

. According to the nonlinear model, the surface heat transfer does not
t{ respond to flow oscillations until some threshold velocity is exceeded.
F- Downstream at this threshold, the linear model would be expected to apply.
' Nonlinear behavior would be expected where the mean and oscillatory velocities
are approximately equal the threshold velocity. Clearly the data show the
heat transfer oscillations first appear at the head-end, while no response is
observed at the aft-end. This behavior is also illustrated by the coherence
between the oscillatory heat transfer and the head-end acoustic pressure.
Figure 13 shows that a low driving amplitudes, high coherence is only found at
the head-end. Furthermore, the region of high coherence spreads downstream
towards the aft-end with increasing driving amplitude. Thus it is clear the
observed behavior is contrary to the behavior expected from the models. This
may explain why motor stability predictions have been misleading when high
velocity coupling contributions are predicted.

2.2.2 Approximate Analysis of Oscillatory Heat Flux

A very simplified analysis of the oscillatory heat flux was conducted to
provide some basic insights into the data. The primary intent was to deter-
mine if the oscillatory heat transfer is consistent with the behavior expected

from connective transfer from one dimensional mean and oscillatory behavior.
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The basic assumption was that the oscillatory heat transfer coefficient is

related to the oscillatory mass velocity.

E o« g <+ 2 (1)
h p u
For a cylindrical cavity with hard walls, the density and velocity oscil-
lations were assumed to have the classical organ pipe axial distribution,

Note that the mean velocity, U, also appears in equation (1). Assuming a one-

dimensional flow,

M (z/L) (2)

u/a = b

W . A
D

Combining the classical modal distributions of the acoustic pressure and

velocity with equations (1) and (2) yields

% « 2_ | cos (nz/m) - isin (m2/L)
TP H, (4L/D) (z/L) (3)

Parametric studies of equation (3) show the maximum oscillatory heat flux
occurs at the head end of the motor, which agrees with the data.

Next, pulse tests suggested that the porous tubing simulating the prope-
llant surface provides large acoustic damping. Furthermore, previous in-house
studies showed the admittance could be explained from measurements of the
steady-state pressure drop across the porous tubing. The details associated
with these statements will be covered in Appendix A. This large damping could
influence the axial distribution of the acoustic pressure and velocity.

To estimate the effect of this admittance on the oscillatory heat trans-
fer coefficient, the Kummer's function solutions of the one dimensional acous-
tics were used to predict the acoustic pressure and velocity (18). These
predicted acoustic parameters were combined with equations (1) and (2) to
estimate the phase angle between the heat transfer and the head-end acoustic

pressure. These predicted phase angles are compared with measured values in

Figure 14.
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Note that at 78 to 84 Hz, the observed phase angles follow the predicted
angles with reasonable accuracy. At the higher frequency however, substantial
deviations occur, particularly near the head-end of the motor. This is con-

sistent with Flandro's prediction (19) and Ben Reuven's prediction (20) that

(e *
’ ‘,\‘-'l_"-' -4 {‘. -

Stokes layer effects will be more significant at higher frequencies.

In addition to comparing the predicted and observed phase angles, one

:f' would like to compare predicted and observed amplitudes. To do this however,

requires the measurement of the mean heat transfer coefficient so the data can

be normalized properly. The steady-state performance of the flux gages pre-

sented in reference 16 showed that heat losses from these gages to the appara- :f!?tﬁﬁ
L tus constitute a large correction which is needed. A method for measuring
these losses was developed when the gages are used in the wall of a plastic
- pipe. 1In the cold flow simulator, however, the plastic wall is replaced by
the porous bronze. Furthermore, the nitrogen flows through this wall and
thereby the gage heat losses may depend on the gas flow. Thus, the methods
reported previously (16) cannot be used.

The special apparatus shown in Figure 15 was then adapted from an earlier
design (21) to minimize the effects of gas flow across the end face of the
gage. Total energy losses from each of the gages over then measured using the
two Mach numbers of interest (i.e., 0.001 and 0.0018) over a range of gas

pressures. These losses were determined using the equation

Z 1

Loss = (Rs + 41)1 ¢ (Tg - Tm) (4)

where E is the time average voltage, Rg is the gage resistance, Tg is the gage

temperature and T is the gas temperature. Figure 16 shows these losses to be

- essentially independent of the gas mass flow parameter Pdi. This suggests F

that the temperature of the porous bronze and the nitrogen are nearly equal to
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that conductive from the gage to the bronze is the dominate mechanism. This
result might have been expected since the surface area for conduction is much
smaller than the area'for transferring energy between the porous bronze and
the nitrogen.

2,2.3 Measurement of the Oscillatory Flow Environment

The oscillatory heat transfer measurements suggest that information on
the oscillatory flow field is needed to interpret the observed behavior.

Hence, significant effort was directed to measuring the oscillatory flsw

field. Specifically, single-element hot-wire anemometer measurements were

»1? made at five axial stations; Z/D = 1.8, 4.22, 6.64, 11.5 and 17.6. The first
station is characteristic of the flow field prior to transition. The second
i;j two stations were chosen to examine the behavior in the flow transition region
while the last two allow measurements in the transitioned flow.

Three sets of conditions were tested. The first two sets duplicate the

surface Mach number, frequency, and damping conditions used in oscillatory
heat transfer tests. Thus, the flow field and heat transfer measurements can

be compared directly over a range of conditions. The third series of tests

were conducted with a reduced acoustic admittance of the simulated propellant

surface. Several years ago, CSD conducted a small analytical and experimental

-:: study to measure the response of these porous bronze tubes. The results of

this study, which are reported in Appendix A, show the response of the surface

e is -
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Thus the real part is negative and provides acoustic damping. This damping
increases with increasing frequency. Under the baseline conditions, the real
part varies between -5 and -8.

To alter the damping, equation (5) shows that the magnitude of the
< response can be decreased by decreasing the volume in the annular cavity
between the flow distribution tubes and the porous bronze tubing. Therefore,
: 3/16 inch polypropolyene casting beads were used to fill approximately 65% of
0 this volume. This reduces the real part of the response to approximately -1.

- The flow field measurements were then repeated using a surface Mach r'--Yer of
N 0.0018.
N
i‘ Initial tests were made to determine the frequencies at which peaks in
acoustic pressure amplitude occur. The rotational speed of the rotary value
was varied and peaks were noted at 65 hz and 135 hz. The magnitude of the
oscillatory pressure increased by a factor of two, as shown in Table I. This

decrease 1in resonant frequency from the classical organ pipe mode is at first

surprising. However, examining equation (5) shows the imaginary part of the

A N )
Sy ag

response is also negative, which depresses the resonant frequency.

At each set of conditions, the oscillatory flowfield was analyzed from
two points of view. The first viewpoint approaches the flowfield on the basis
5 of the turbulence properties; here the spectra of turbulence intensity (velo-
If city oscillations normalized to the local mean speed) is the primary property
of interest. The second viewpoint looks at the flowfield on the basis of
3 acoustics; here the amplitude phase and coherence of the normalized acoustic

particle velocity (with respect to the normalized head-end acoustic pressure)

are the properties of primary interest.

Figure 17 through 20 show the radial profiles of the turbulence intensity

e spectra for two frequencies at Z/D = 1.8 and Ms = 0.001. A log scale was
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chosen so both the low intensity near the centerline, as well as the higher
intensities near the wall, could be displayed conveniently in the same water-
fall. Figure 21 shows the turbulence intensity spectra without any acoustic
driving. Several observations can be made. First, the acoustic oscillation
appear to reduce the low level background turbulence to even lower levels.
Second, the intensity of the driven oscillations increases significantly near
the wall. This could result from a combination of an increased acoustic
particle velocity and/or the decreased mean flow velocity near the wall. This
point leads to an interest in analyzing the data from the acoustics viewpoint,
Third, nonlinear behavior (as indicated by the harmonic content) first appears
in the near wall region. This nonlinear behavior increases with both
increasing frequency and increasing driving amplitude, which is consistent
with the oscillatory heat transfer observations.

Figures 22 through 25 show the radial profile of these same data from the
acoustics viewpoint, that is the coherence, amplitude, and phase of the acous-
tic particle velocity relative to the head-end acoustic pressure at the dri-
ving frequency. These plots all show the amplitude and phase to be essential-
ly constant in the center cone flow. Near the wall, however, there are
significant changes in both amplitude and phase. This behavior is qualita-
tively consistent with the acoustic/wall interactions predicted by Flandro
(19) and suggested by Ben Reuven (20). Quantitative comparisons between these

two models and these data are planned during the next year.

Figure 26 shows the corresponding radial profile in the mean speed. Note
that the single element hot-wire anemometer was oriented to measure the total
velocity in the r-z plane. Also shown on figure 26 are the total velocity

profiles predicted by the Berman, Taylor, Culick (BTC) models and 1/7 power
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law for turbulent pipe flow. Note that the data agree with BTC model predic-

P

tions and also that driving amplitude and frequency have little effect. Thus,

Jo- s e ¥ -

the flow nonlinearities in the near wall region do not have a significant

effect on the gas speed.

Figures 27 through 36 show similar data at the higher surface Mach number
of 0.0018. These data show basically the same overall behavior found at the
lower surface Mach number. At the lower driving amplitude, however, the
coherence shows a larger decrease mid-way between the centerline and the
wall than was observed at the lower surface Mach number. Also the wall
efffect on the amplitude extends much farther into the case flow at the higher

Mach number (at the lower driving amplitude).

Figures 37 through 46 show the corresponding results when the response of

the surface was reduced by filling the annular flow distribution cavity with

P beads. While the qualitative behavior is similar, a number of potentially
significant differences are apparent. Note that now the background turbulence
is influenced by the presence of the acoustic wave. Second, the deviation

from planar wave behavior near the wall are much larger, but the effect does

not penetrate as far into the core flow.

.

LA

o To explore this near wall behavior further, two efforts are underway.

it

First, Flandro's analysis is being modified to incorporate the acoustic
wall conditions of cold flow experiment in his model , i.e. equation (5).
Parametric studies will then be made to examine how the acoustic response of
the wall influences the local acoustic velocity. In addition, preparations are
being made to make split film anemometer measurements. These measurements
will resolve the vector direction of the acoustic velocity in the r-z plane

o near the wall and thereby provide a better basis for comparing the data to the

models.
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Moving downstream, figures 47 through 51 show the radial distribution of
the turbulence intensity spectra at Z/D = 4.22 for the low surface Mach number
and the highly damped surface. Note, that the magnitude of the natural turbu-
lence, as shown in Figure 51, increases significantly near the wall compared
to the core flow. At the wall, there is also a strong peak in the spectra at
the natural turbulence at approximately 70 hz. This suggests the flow has

become inherently unstable and is transitioning to a more turbulent flow.

Comparing figures 47 through 50 with figure 51 shows that the frequency
of this peak interacts with the acoustic wave. At the lower driving ampli-
tudes, the background turbulence peak moves to a higher frequency. When the
driving frequency approximates this frequency (figure 47), the acoustic wave
is difficult to separate from the background turbulence. Furthermore, the
harmonic content of the velocity oscillations has increased relative to the
content at Z/D = 1.8. Also, note that the background turbulence is not damped

by the presence of the acoustic waves.

At the higher driving amplitudes, the dominant frequencies are associated
with the driving frequencies and it harmonics. The spectral peaks in the
background turbulence have been reduced substantially and the spectra is more
characteristic of fully developed turbulence. It is also apparent that the
nonlinear behavior now extends from the wall all the way to the centerline at
the higher acoustic pressure. This suggests that either the acoustic wall
interactions are larger at this location, or that nonlinear flow structures
from upstream locations are mingling with the locally generated nonlinear flow

structures.
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Acoustic wave analyses of these data are shown in figures 52 to 55. At
the lower driving, the acoustic wave is nearly planar in the core; but near
the wall, there are significant shifts in the amplitude, phase, and
coherence. At higher driving, these shifts from planar behavior are smaller;

in fact at the higher frequency, the waves appear planar all the way to the

wall.

The mean velocity profiles shown in figure 56 now indicate there is some
ir deviation from the BTC profile near the wall, but reasonable agreement still
f; seems to exist in the core flow. Also the oscillations have no effect on the

profile including the near wall region.

Turbulence intensity spectra, acoustic wave behavior, and the mean

E: velocity profiles at the higher surface Mach number for both the surface
- responses are shown in Appendix B. Qualitatively these data show similar
behavior to the lower Mach number data. They confirm the increase in near

:. wall turbulence, a tendency for organized turbulent background oscillations

5 near the wall, and their interactions with the acoustic waves. The
characteristics of the acoustic wave across the port are also very similar to
. the data for the lower Mach number.
N Moving down to Z/D = 11.5, figures 57 through 61 show the turbulence
e intensity spectra for the lower surface Mach number tests. Figures 62 through
5 65 show the corresonding acoustic wave analysis of these same data. At ghe
3 lower driving amplitude, the driven velocity oscillations are confined to the
core flow. It appears that the turbulence in the near wall region has suffi-
éj cient energy to prevent any significant increase in the oscillatory velocity
'near the wall at the driving frequency. This explains the corresponding
- absence of driven heat transfer oscillations at this axial location. At the

higher driving amplitude, the nonlinear behavior is confined to the core flow
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at the lower frequency, but extends to the wall at the higher frequency. The
corresponding heat transfer spectra show the same behavior. From the acous-

tics viewpoint, the core flow region indicates planar wave behavior (i.e.

constant amplitude, phase and coherence across the radius) except for the low

frequency and low driving amplitude condition,

Figure 66 shows that velocity profile is considerable flatter than the
BTC profile. However, the flow has not transitioned to fully developed turbu-
lent flow, and is not influenced by the acoustic wave content of the flow.
This indicates that the flow nonlinearities are small compared to the mean‘

flow.

Appendix C contains the data obtained at this axial station at the higher
surface Mach number with both the baseline and reduced wall damping. While
there are quantitative differences, the overall qualitative behavior is simi-
lar to the data shown in figures 57 through 66. Measurements were also made at
Z/D = 6.64 and 2/D = 17.5. Again there are quantitative differences but the
overall qualitative pictures of the flow field is consistent with the pictures

described above.

The axial distribution of the amplitude and phase of the centerline

acoustic velocity (referenced to the head-end acoustic pressure) were then

compared to one-dimensional predictions. To account for the significant

effect of the wall damping, the predicted amplitude and phase of the acoustic
velocity were estimated at each axial location using the Kummers Function
solution to the acoustic equations (18). Tables II through IV compare the
predicted and observed acoustic velocities for each of the three basic flow
conditions. At the lower surface Mach number, Table II shows reasonable

agreement between the predicted and observed amplitudes at both frequencies.
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The phase angle comparisions also show reasonable agreement; the one signifi-

cant disagreement being at Z/D = 17.6. In addition, the magnitude of the

acoustic driving also has little effect as expected in a linear system.

S,
W

Table III shows a similar comparison for the higher surface Mach naumber

S 4,
s 450

and baseline damping. Here, both amplitude and phase comparisons show
reasonable agreement at the first two axial stations for all flow conditions.
For the two downstream locations, however, significant differences appear at
all flow conditions. At Z/D = 6.64, the data at the higher frequency agree
with the predictions reasonably well, but significant differences are observed
33 at the lower frequency. Thus, surface Mach numbers appears to influence the
acoustics at higher Z/D by some mechanism which is not properly incorporated

in the acoustic model.

= Table IV shows the comparisons for the higher surface Mach number flow

with the reduced surface damping. Only the data at Z/D = 1.8 show good

- agreement with the predicted behavior at all flow conditions. At Z/D = 4,22,
the higher frequency results compare favorably, but significant differences
are observed at the lower frequency. Significant deviations are observed at
i{ X/D = 6.44 for all flow conditions. At Z/D = 11.5, reasonable agreement is

then observed, except at the higher frequency and lower driving amplitude.

Stepping back and examining all three sets of data together, one dimen-

sional acoustics seem to model the head-end behavior reasonably well for all

‘:"‘l. "'".'.. o

flow conditions. For conditions near and downstream of the flow transition,
- these appear to be interactions between surface Mach number, frequency, and

‘ wall damping which produce significant deviations from one-dimensional beha-

; vior. Obviously, the model is deficient. One possible deficiency is the one

il g

R
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dimensional nature of in the model. It is also possible that all the opera-
tive mechanisms are not included in the model. For example, neither the
effects of turbulence or wave refraction, as suggested by Hersh (22), are

included. These two additional mechanisms also should be investigated in

future analytical studies.
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3.0 CONCLUSIONS

A number of significant conclusions can be drawn from the experimental
results. First, and perhaps most important, the velocity coupling models used
in combustion stability predictions are incorrect. In fact, stability
predictions based on these models could lead to substantial errors in
estimating motor stability behavior. Furthermore, these data suggest how
these models can be corrected, as well as providing a basis for interpreting
motor stability information.

Second, the hot wire anemometer measurements show the general properties
of the flowfield are consistent with Beddini's flowfield model. Mean velocity
and turbulence intensity profiles show reasonable agreement with the inviscid
rotational solutions of the turbulent Navier-Stokes equations. Furthermore,
imposing acoustic velocity oscillations on the flowfield has little effect on
the mean velocity profile. However, there is an interaction between acoustic
waves and the characteristic frequency of the initial breakdown of the
inviscid flow. Also, turbulence intensities near the wall increase
significantly at approximately the same axial station as transition in the
mean velocity profile.

Third, there is a strong interaction between the acoustic velocity
oscillations and the flowfield downstream of the transition of the mean flow.
Specifically, the wall heat transfer does not respond to low amplitude (i.e.,
< 0.1%Z) acoustic oscillations. It appears that the increased turbulence
intensities damp out the acoustic velocity oscillations or the increased
gradients in the mean velocity gradient refracts the acoustic wave away from
the surface. The net effect is to confine the effect of the acoustic waves to

the core region downstream of the flow transition. At higher acoustic

e e % te . ‘e ."a e e e el ot te t Nt Lt te et R
.4‘.‘..|. o f-.."».'.. e e e y s .. . ..... ~ T e O *,

PR TN IR, WA IR




e AL E T TAN VST AT R TAN VN Ay AT PR AL B i B R A S T Al e i in i S 2t B 8

amplitudes however (i.e. > 0.2Z) the acoustic waves penetrate to the wall and -

influence the wall heat transfer.

Fourth, nonlinear effects in both the wall heat transfer and the -9
flowfield first appear in the head end region, i.e. upstream of the flow :

transition. These nonlinearities are first observed in the flow near the wall

but can penetrate to the centerline under some flow conditions. The detailed o
structure of these nonlinear flows require further study which will
necessitate testing with multiple element anemometer.

.
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N Appendix A

t% ACOUSTIC ADMITTANCE OF POROUS TUBING
s? The acoustic admittance of the solid probellant is an extremely important
f factor in determining the acoustic stability of the combustor. Likewise, the ?:gggig;
3 admittance of the porous tubing is important in interpreting acoustic Eigﬁéié:
! measurements in the cold flow models. Therefore, independent research and F:ANP"
f development (IR&D) studies were conducted to evaluate the acoustic admittance
i (or, more precisely, the acoustic mass response function) of the porous tubes
N used in these models.

In the course of designing the Titan cold flow models (14,15), Dunlap
Ef developed a correlation between the pressure drop across and flow through the
z? walls of porous tubes. This correlation has the form:

2 - B2 -k (p?™ (A-1)

i where
- PA = the upstream pressure
2 Pw = the downstream pressure

K = the constant that depends on tubing wall thickness and

porosity

=
[]

mass flow rate per unit area

n = a constant that depends on the type of flow in the porous
tubing.
e Figure A-1 shows excellent agreement between equation (A-1) for one set
i of experimental data, the correlation coefficient being 99.8%.

Under acoustic conditions, the pressure on both sides of the tubing

X
:f oscillates. Assuming quasi-steady flow through the tubes, the mass response
q
1 function can be derived from equation (A-1) to be:
” ‘ - 'S - 2
2 P P (A-2)
. = | == A
. R (2-!1) - ﬂrA— -1 _—A -1
% P, P, P,
N
+ A"l
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3
3
3
L, vhere
? R = the mass response function
’ (-) = represents time average values
~
q ~ = represents oscillating components.
e
" Thus, the response depends on the relative magnitude and phase between
, the oscillatory pressures on each side of the tube wall, as well as the mean
hf pressure drop across the tube wall.
fﬁ To check equation (A-2), experiments were run in the rotating valve with
the setup shown schematically in figure A-2.
;f Excellent agreement between the observed and predicted values is shown in
g_ figures A-3. [Equation (A-2) thus appears to be valid for estimating the
K acoustic response of the porous tubing.
ﬂ: One limitation, however, is that the oscillatory pressure on the high
7§‘ presssure side of the tubing is also required in addition to the downstream
presssure which is usually measured. To obtain this pressure requires an
13' additional measurement. Alternatively, one can assume that the cavity
o
~$ upstream of the tubing is fed through a sonic choke and behaves in the bulk
mode.
W
" This assumption provides another relation between the mass flow
lJl
'i oscillation and the upstream pressure oscillation, namely,
k3 d . Pz - Pz 1/(2-n)
A vE = @ - A" W
T t =
K
(A-3)
E: where V is the cavity volume.
: Assuming sinusoiudal oscillations, equation (A-3) can be linearlized and
5} combined with equation (A-2) to yield 2
> = 2
- o [z2r 2 F) By
" (2-n) 2-n P + 1A v -1
: w w (A-4)
, il A. 2 :::"‘.:'-:' e\
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, Note that the segmented design used in CSD s cold flow models prevents
i axial mode oscillations in the upstream cavities, and therefore the bulk mode

assumption is appropriate to use for these models. The final step in applying
) this approach to the cold flow experiment is to measure the pressure drop as a
N function of mass flow for the actual porous tubes used in this apparatus used
in the cold flow velocity coupling studies. Figure A-4 shows the data from

this apparatus which further substantiates the use of equation A-1 to

5 correlate the results,
g
4
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Figure A-2. Apparatus for Porous Tube Experiment
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APPENDIX B
Additional Flowfield Data
at 2/D = 4,22
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